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Abstract
For a singularity free gradient field in an open set of an oriented Euclidean space
of dimension three we define a natural principal bundle out of an immanent
complex line bundle. The fibres of this bundle encode information. The
elements of both bundles are called internal variables. Several other natural
bundles are associated with the principal bundle and, in turn, determine the
vector field. Two examples are given and it is shown that for a constant
vector field circular polarized waves with values in the principal bundle are
associated with the vector field. These waves transmit information encoded in
internal variables and, moreover, determine a Schrödinger representation. On
SU(2) a relation between spin representations and Schrödinger representations
is established. The link between the spin 1

2 model and the Schrödinger
representations yields a connection between a microscopic and a macroscopic
viewpoint. Quantization and its link to information is derived out of the
Schrödinger representation.

PACS number: 02.90.+p

1. Introduction

Our primary interest in these notes is the concepts of information and information transmission.
We will present an approach which allows us to link both notions in a natural way. The technical
devices will be the concepts of Heisenberg groups and their Lie algebras, i.e. Heisenberg
algebras. Two notions of information will be applied and combined: on the one hand the
pointal notion of information and on the other hand the probabilistic concept of information.
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At first, let us consider a simple but basic situation, namely a vector field in Euclidean
three-space. Given an integral curve β of it, i.e. a field line, we may consider a point on β as
a piece of information. The parametrization of β determines a motion of an initial point with
a velocity determined by β̇ and hence by the vector field. So the motion caused by the vector
field describes the transmission of information in a universal time. A more elaborate setting
for the treatment of information and its transmission in connection with a vector field is based
on the following observations.

Each singularity free gradient field in an open part of a three-dimensional Euclidean
space admits a variety of natural bundles such as complex line bundles, principal bundles,
bundles of complex numbers, quaternions, Heisenberg groups, Heisenberg algebras etc. All
these bundles emanate from the fact that a field vector (i.e. the value of the vector field at
a point) has a real plane as an orthogonal complement in three-space causing a Heisenberg
algebra bundle. These planes form a complex line bundle in a natural way. All other bundles
mentioned can be constructed out of this complex line bundle. Each one of them determines
the vector field uniquely. This is why the elements of the respective bundles are called internal
variables of the vector field.

These bundles are trivial when restricted to an integral curve β; hence one fibre is enough
to describe the bundle along β. Each of the fibres can be regarded as an initial fibre and
therefore its elements as initial internal variables. Let us confine ourselves to the complex
line bundle for the moment. It contains a natural principal bundle Pa the fibres of which are
circles.

We will demonstrate on two examples, namely on the one hand on the constant vector
field and on the other hand on the m/r-gradient field (here called the solar field), a possible
interpretation of internal variables and a use of them. We will show that circular polarized
electromagnetic waves travelling along a field line can be regarded as consisting of internal
variables.

The transmission of information along vector fields follows a motion on geodesics on the
principal bundlePa restricted to a field line β, i.e. on Pa|β . In that sense a piece of information
is transmitted along a field line. This line serves as a channel of information. In the case of
a constant vector field or in the case of the solar field the rotation of a geodesic motion about
the channel of information yields a geometric picture of a wave. Hence it can naturally be
associated with the motion of a point along the integral curve. This kind of a wave can, for
example, be interpreted as an electromagnetic wave.

Such a wave, in fact, allows us to construct a Heisenberg group, which admits a
Schrödinger representation of any frequency. It implements the geometry of the Heisenberg
group into the unitary group of a Hilbert space of signals. The infinitesimal Schrödinger
representation carries over the geometry of the Heisenberg algebra into the Lie algebra of
the unitary group of that Hilbert space, yielding in particular the uncertainty relation of
Heisenberg. Thus the information encoded in a complex line, i.e. a Heisenberg group modulo
its centre, as well as the information transmission along the centre (the information channel)
are equivalently described by the Schrödinger representation. It modulates the information
contained in the Heisenberg algebra on signals.

Quite another bundle of internal variables is the bundle of quaternions, a trivial bundle
which contains the trivial SU(2)-bundle. The (not necessarily trivial) bundle of Heisenberg
groups is closely related to this SU(2)-bundle. This is due to the following considerations.

On SU(2) there is a direct relation between spin representations and Schrödinger
representations, in particular for spin 1

2 . The remarkable fact that the group structure of
SU(2) is determined by only one Heisenberg group is an observation which is crucial for
instance in the imaging principles of magnetic resonance imaging (MRI). The reason is that
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the information encoded in the spins can be analysed via signals by the ambiguity function,
which is determined by the Schrödinger representation. This is an implementation of the fact
that the Schrödinger representation causes a spin 1

2 representation and vice versa. Hence we
have a correspondence which gives rise to a spin model that, on the microscopic level, encodes
information which can be read out on the macroscopic level by the ambiguity function. Thus,
through the relation between the spin 1

2 formalism and the Schrödinger representation, we
have the mathematical basis for a link from the microscopic to the macroscopic scale. In MRI
a technical realization of the spin model described here uses the quantum mechanical spin of
protons which interacts with constant magnetic fields and signals.

This spin 1
2 –Schrödinger correspondence is ultimately connected to the three dimensions

of the Euclidean space surrounding us.
We finally link information and its transmission formulated via the Schrödinger

representation to a natural and established notion of quantization. We motivate it by entropy
preserving transformations. Therefore, this kind of quantization is an aspect of information
theory expressed by the theory of geometric optics.

Most of the results in this paper require rather involved proofs and hence many proofs
will only be outlined. More detailed versions can be found in Binz et al (2003) and in Pods
(2003).

We are in debt to the referees for a series of valuable remarks.

2. Gradient fields in three-space and internal variables

Any singularity free smooth gradient field X : O → O × E = TO defined on an open set
O in an oriented three-dimensional Euclidean space E admits a natural collection of internal
variables. Here TO = O × E is the tangent bundle of O. The orthogonal complement
Fa(x) := (a(x))⊥ ⊂ E is a two-dimensional plane for any x ∈ O , where the smooth map
a : O → E is the principal part of X = (id, a). It is the basic collection of internal variables
of X at x. One of the fundamental observations in these notes is that the R-linear space Fa(x)

is a C-linear space in a natural way, as well. In order to make this apparent, we need to embed
Fa(x) into a larger space, namely into the skew field of quaternions H = R · e ⊕ E generated
by E with e the unit element. Let a(x) = b for reasons of simplicity. The key to the C-linear
structure of Fb lies in the 2–2-splitting of H as

H = C
b ⊕ Fb

where Fb is the orthogonal complement of b in E and C
b is the orthogonal complement of Fb

in H. The scalar product 〈 , 〉 on E extends to all of H such that e ∈ H is a unit vector orthogonal
to E. The orthogonal complement C

b of Fb is a commutative subfield of H generated by e
and b

|b| . It is naturally isomorphic to the field C. The isomorphism maps 1 on e and i on the

imaginary unit b
|b| , respectively. The unit circle in C

b forms the unitary group of C
b, which,

of course, is isomorphic to U(1). We will call it U
b
|b| (1) in the following. Hence the vector

a(x)

|a(x)| has turned into an imaginary unit for any x ∈ O .
The product u · v in H for u, v ∈ E is given by

u · v = u × v − 〈u, v〉 · e (1)

where × is the cross product in E. The centre of H is R · e. As can be easily seen, C
b operates

on Fb by multiplication from the right. Hence Fb is a C
b-linear space and, in turn, a C-vector

space, as well.
The real plane Fb carries a symplectic structure ωb, too, defined by

ωb(h1, h2) := 〈h1 × b, h2〉 ∀h1, h2 ∈ Fb. (2)
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This symplectic structure is based on the rotation by π
2 given by the multiplication with the

imaginary unit b
|b| .

O ×H is a trivial bundle containing
⋃

x∈O{x}×Fa(x). This set, regarded as a topological
subspace of O × H, inherits the structure of a smooth vector bundle over O. Since each fibre
is a complex line, it is in fact a complex line bundle called F

a . Accordingly, ∪x∈OC
a(x) ⊂ H

is the total space of a bundle over O, the bundle of complex numbers associated with X.
The bundles F

a and C
a are collections of internal variables of X. While C

a is a trivial
bundle, F

a is not, in general. Both sorts of internal variables of X serve for the description of
quite different qualities of X. The trivial bundle O × H subsumes both F

a and C
a .

The three-sphere S3 ⊂ H can be regarded as a subgroup of H called SU(2). Hence
O × H contains the trivial group bundle O × SU(2), which consists of a very important sort
of internal variable of X as we will see later on.

The complex line bundle F
a contains a natural principal bundle Pa characterizing X. The

fibre at x ∈ O is a circle of radius |a(x)|− 1
2 . Another principal bundle Ḟ

a
of internal variables

is obtained from F
a by deleting the zero section. The vector bundle F

a is an associated bundle
for both Pa and Ḟ

a
.

Moreover, there is a natural Heisenberg group bundle associated with Pa , which
determines X, too. To construct it, first of all we observe that for each b ∈ S2 the unit
circle Ub(1) ⊂ C

b is a commutative subgroup of H. For any non-vanishing quaternion h ∈ H

the circle h · Ub(1) inherits a group structure with h as unit element; obviously, it is isomorphic
to Ub(1). For any x ∈ O the singularity free vector field X determines the set

Ga(x) := 1√|a(x)| · Ua(x)(1) ⊕ Fa(x) ⊂ H.

It is a group under the multiplication

(z1 + h1) · (z2 + h2) := z1 · z2 · e
1
2 ωa(h1,h2)

a
|a| + h1 + h2 (3)

holding for all z1, z2 ∈ |a(x)|− 1
2 ·Ua(x)(1) and any pair h1, h2 ∈ Fa(x). Here the multiplication

z1 · z2 for zs = |a(x)|− 1
2 · eαs · a

|a| ∈ |a(x)|− 1
2 · Ua(x)(1), s = 1, 2, is given by the multiplication

in Ua(x)(1) followed by a rescaling of the product by a factor |a(x)|− 1
2 . This group Ga(x) is a

Heisenberg group. The topological subspace

G
a :=

⋃
x∈O

{x} × Ga(x)

of O × H is a smooth group bundle, the Heisenberg group bundle of X (cf Pods 2003).
Obviously,Ga also manifests a collection of internal variables which is of particular importance
in particle physics and imaging techniques. The latter will be indicated below. Clearly, G

a

determines X uniquely; the value of X at x is the tangent vector at the unity of the centre
|a(x)|− 1

2 ·Ua(x)(1) of Ga(x). Moreover, Fa together with the fibrewise given symplectic forms
determines X and so does the fibrewise oriented principal bundle Pa .

3. Two examples

If we consider specific vector fields in these notes, most of the time we will concentrate
on the two types presented in more detail in this section. In doing so, we can demonstrate
the principles of our construction of internal variables in a rather simple setting while at
the same time we are working with vector fields which are important in MRI and classical
mechanics, respectively. Thus the notion of internal variables allows interpretations in well-
known surroundings.
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First let us consider a constant vector field X on O ⊂ Ė with principal part having value
a ∈ E for all x ∈ O . Obviously the principal bundle Pa is trivial, i.e. Pa is isomorphic to
O × U(1).

Since an integral curve β of X is a straight line segment parametrized by

βx0(t) = t · a + x0 with βx0(0) = x0

the restriction Pa
∣∣
βx0

of Pa to the image of βx0 is a cylinder with radius |a|− 1
2 . The image of

an integral curve as a point set is a straight line segment, as well.
As the second type of an example of a principal bundlePa associated with a singularity free

vector field, let us consider a central symmetric gradient field X = grad V of a smooth function
V on O := E\{0}. This is to say that the potential V and the principal part a are invariant
under SO(E); the field lines are straight lines emerging from 0 ∈ E. The level surfaces of
the potential are spheres S2

r of radius r centred at {0}. Obviously a(x) = ±|a(x)| · x
|x| for all

x ∈ O . The Gaussian curvature κS2
r
(x) of S2

r satisfies κS2
r
(x) = 1

|x|2 at any x ∈ S2
r and for all

r > 0.
To determine the principal bundle Pa we first look at Pa

∣∣
S2

r

, i.e. its restriction to S2
r .

Clearly

Pa
∣∣
S2

r

⊂ T S2
r ⊂ O × E or, fibrewise formulated, Pa

x ⊂ TxS
2
r = Fa(x)

at any x ∈ O . For each u ∈ SU(2) the inner automorphism

τu : H −→ H τu(k) := u · k · u−1 (4)

fixes e and is an element of SO(E); more precisely, τ : SU(2) −→ SO(E) is two-to-one.
Given any two points x, x0 ∈ S2

r , there is a quaternion u ∈ SU(2) such that

x = τu(x0) and
a(x)

|a(x)| = τu

(
a(x0)

|a(x0)|
)

.

Therefore, Pa
x = τu

(
Pa

x0

) = τu

(
vx0

) · τu

(|a(x0)|− 1
2 · Ua

x0
(1)

)
for any fixed vx0 ∈ Pa

x0
. For the

two-to-one smooth map

f : SU(2) −→ Pa
∣∣
S2

r

defined by f (u) = τu

(
vx0

)
for all u ∈ SU(2) the projection prH := pr a ◦ f maps SU(2)

smoothly onto S2
r ⊂ O . Here pr a : Pa → O denotes the projection from Pa onto O. The

fibration on SU(2) caused by prH is called the Hopf fibration.
Thus the total space of the principal bundle Pa = Ṙ ·x0 ×Pa

∣∣
S2

r

over O is the Z2-quotient

of Ḣ := H\{0}. The quotient map f : Ḣ −→ Pa assigns the value f (r ·u) = (
r · x0, τu

(
vx0

))
to r · u ∈ S2

r ⊂ H for all r ∈ Ṙ and for all u ∈ SU(2). The Hopf projection prH extends to all
of Ḣ by setting

prH (r · u) = r · τu(x0) ∀r ∈ Ṙ and ∀u ∈ SU(2).

Hence Ḣ is a U(1)-principal bundle with prH : Ḣ −→ O as its projection, here called the
extended Hopf fibration. Therefore, we state (cf Binz and Schempp 2000):

Proposition 1. The extended Hopf fibration of Ḣ over O := E\{0} defined by the projection
prH is the two-fold covering of the principal bundle Pa of the central symmetric field X.

The above proposition visualizes the geometry of the level surfaces and the field lines in
terms of the principal bundle Pa . The Hopf fibration plays an important role in teleportation,
planetary motion and the treatment of the magnetic monopole (cf Binz and Schempp 1999,
2000, 2003, Greub and Petry 1975).
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Finally we will illustrate from a longitudinal point of view the principal bundle associated
with the gradient field with potential Vs given by

Vs(x) := − m̄

|x| ∀x ∈ O

where m̄ is a positive real. This potential governs planetary motions.
Since grad Vs is the principal part a of the gradient field

grad Vs(x) = − m̄

|x|2 · x

|x| x ∈ O (5)

(called the solar field in what follows), the radius of Pa
x is |x| · m̄− 1

2 at any x ∈ O .
Hence if βx0 denotes an integral curve passing through x0 ∈ O , the (trivial) principal

bundle Pa
∣∣
βx0

is a cone (cf Pods 2003).

The minus sign in (5) can be absorbed by switching from the right action of C
a
x on Fa to

the left action, as will be done in what follows.

4. Horizontal and periodic lifts, information and its transmission along the vector field

An internal variable can be interpreted as a bit of information. In other words, information
is inscribed by means of internal variables. Thus the fibres Fa(x) and Pa

x can be regarded as
collections of pieces of information at x.

In order to treat a transmission of information along vector fields, we will first of all see
that Pa admits a natural connection (cf Sniatycki 1980, Binz et al 1988, Binz and Schempp
2001a). A tangent vector ξ ∈ Tvx

Pa is of the form ξ = (x, vx, h, ζ ) where h is tangent to x
and ζ is tangent to vx . Then the connection form αa is defined by

αa(vx, ξ) := 〈vx × a(x), ζ 〉 ∀x ∈ O ∀vx ∈ Pa
x and ∀ξ ∈ Tvx

Pa

where vx varies in the fibre Pa
x of Pa at x. Denoting

Horvx
:= ker α(vx, . . .) ∀vx ∈ Pa

x

the set

Hor :=
⋃

vx∈Pa
x

x∈O

Horvx

inherits from TPa a natural manifold structure. In fact, it is a vector subbundle of TPa for
which

T pr a : Horvx
−→ TxO

is an isomorphism for all x ∈ O . Associated with it is a natural covariant derivative (cf
Greub et al 1973, Binz et al 1988). The curvature 	, i.e. the exterior covariant derivative of
αa , can be written in the form

	(x; v,w) = κ(x)

|a(x)| · ωa(x)(v,w) ∀v,w ∈ Fa(x).

Here κ(x) is the Gaussian curvature of a level surface S passing through x ∈ O and |a(x)| is
the field strength at x. Moreover, ωa(x) at x ∈ S is the symplectic structure of Fa(x) = TxS.
Clearly, a(x)

|a(x)| is the unit normal of S at x.
This shows that the curvature 	 at x depends entirely on the geometry of the level surface

S of the potential of X, the field strength and the symplectic form.
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Any (smooth) curve σ in O defined on an interval in R yields a unique horizontal lift σ hor

through an initial point vx ∈ Pa
x , say. Horizontal means that

σ̇ hor (t) ∈ Horσ (t) ∀t .

The horizontal lift σ hor of a (smooth) curve σ in O satisfies

σ hor (t) ∈ Pa
σ (t) ∀t .

This is to say that σ hor is a curve in the restriction Pa|σ of Pa to σ . Obviously Pa|σ is a
two-dimensional smooth surface fibred into circles. Since σ hor (t) ∈ Pa

σ (t) for any t satisfies

αa(σ hor (t), σ̇ hor (t)) = 0 = 〈σ hor (t) × a(σ hor (t)), σ̇ hor (t)〉
and σ hor (t) × a(σ hor (t)) is tangent to the circle Pa

σ (t), the curve σ hor intersects each fibre of
Pa

σ (t) perpendicularly. Clearly, Pa|σ is a rotational surface in E provided the image of σ is a
straight line segment. Hence if Pa|σ is a rotational surface each horizontal lift is a meridian.

In the case σ̇ and σ̈ are linearly dependent, the horizontal lift of σ to Pa|σ is a pre-
geodesic, i.e. a geodesic up to a reparametrization. This is the case if Pa|σ is isometric to a
rotational surface.

Obviously, if β is an integral curve of the constant vector field and the solar field,
respectively, a horizontal lift is a geodesic and a pre-geodesic on Pa|β , respectively, with the
Riemannian metric given by the scalar product on E.

Next let us turn to a phenomenon which may arise if an integral curve β of X is closed.
Here closed means that

β(t0) = β(t1)

for two values t0 and t1 in the domain of β. As is easily verified, a horizontal lift βhor satisfies

βhor (t1) = βhor (t0) · zβ

for some zβ ∈ Ua(1). This is to say βhor is not necessarily closed again. The complex number
zβ ∈ Ua(1) is called the holonomy of β. It can be computed as

zβ = e−a·∫
S′ 	

where S′ is a surface in O bounded by β. (Clearly a has to be replaced by i if zβ is in U(1).)
This concept of closedness at x ∈ O can obviously be generalized to an arbitrary closed

curve σ in O. If Sx denotes the collection of all (smooth) curves in O closed at x ∈ O , then

{zσ | σ ∈ Sx} ⊂ Ua(1)

forms a subgroup, called the holonomy group (cf Greub et al 1973). This subgroup is sensitive
to the curvature.

The holonomy is interesting because of the following: Let us regard βhor (t) as a parallel
transport of the initial internal variable vx along the trajectory β with initial values x. In the
case of a field line β which closes in x = β(t1), the internal variable βhor (t1) does not need to
coincide with the initial value vx at all. A holonomy may affect this information transmission.
If so, this transmission is affected by the curvature 	 caused by the vector field via Pa .

Let a be constant, now. A curve γ on Pa|β here is called a periodic lift of β through vx

iff it is of the form

γ (s) = βhor
vx

(s) · ep·s· a
|a| ∈ Pa

β(s) ∀s (6)

where p is a fixed real.
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Clearly, γ is a horizontal lift through vx iff γ = βhor
vx

, i.e. iff p = 0. In fact any periodic lift
γ of β is a geodesic on Pa|β . Hence γ̈ is perpendicular to Pa|β . Due to the U(1)-symmetry
of Pa|β , a geodesic σ on Pa|β is of the form

σ(s) = βhor
vx

(θ · s) · ep·θ ·s· a
|a| ∀s

as is easily verified. Here p and θ denote reals. θ determines the speed of the geodesic. Thus
σ and γ have accordant speeds if θ = 1, as can be easily seen from

γ̇ (s) =
(

p · a

|a| · βhor
vx

(s) + β̇hor
vx

(s)

)
· ep·s· a

|a| ∀s

and in particular from

γ̇ (0) = p · vx · a

|a| + β̇hor
vx

(0).

The real number p determines the spatial frequency of the periodic lift γ due to 2 · π
T

= p

|vx | .
Here T is the period of revolution of a point on γ . Interpreting s as a time, the spatial
frequency of γ counts the number of revolutions of a point on γ around Pa|β per unit time
and is determined by the Fa(x)-component of the initial velocity. On the other hand p is a first
integral of the motion γ due to the U(1)-symmetry of the cylinder Pa|β .

In the case of the non-constant vector field X(x) = (
x, x

|x|3
)

with x ∈ O , i.e. the solar
field with mass one, an integral curve can be parametrized by

β(t) = x0 · (3t − 2)
1
3 with β(1) = x0.

Let |x0| = 1 and let a parametrization of the body of revolution Pa|β be given in Clairaut
coordinates via the map x : U → E defined by

x(u, v) := (3v − 2)
1
3 · r(eu· a

|a|
) ·

(
vx0 +

a

|a|
)

on an open set U ⊂ R
2. Here r is the representation of U

a
|a| (1) onto SO

(
F

a
|a|

)
for any x ∈ O .

Then a geodesic γ on Pa|β takes the form

γ (s) = x(u(s), v(s)) = (3v(s) − 2)
1
3 · r

(
eu(s)· a

|a|
) ·

(
vx0 +

a

|a|
)

(7)

where the functions u and v are determined by

u(s) =
√

2 · arctan

(
s√
2c

+
c1

2c

)
+ c2 (8)

and

v(s) = ±1

3

((
1√
2
s + c1

)2

+ c2

) 3
2

+
2

3
(9)

(cf Pods 2003). Here c1 and c2 are integration constants determining the initial conditions.
Since we are concerned with a forward movement, i.e. a transmission of information along
the channel R · a

|a| , only the positive sign in (9) is of interest in v(s). The constant c fixes the
slope of the geodesic via

cos α = c√(
1√
2
s + c1

)2
+ c2

where α is the constant angle between the geodesic γ , called periodic lift, again, and the
parallels given in Clairaut coordinates. This means that c vanishes precisely for a meridian.
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A geodesic γ is a horizontal lift of β iff γ is a meridian. Thus the parametrization of a meridian
as a horizontal lift βhor of an integral curve β has the form

βhor (t) = vx · (3t − 2)
1
3

with βhor (1) = vx0 as well as β(1) = x0 for 2
3 � t for any initial vx ∈ Pa

β(1).
For the constant vector field from above, any periodic lift γ of β through vx is uniquely

determined by the Ua(1)-valued map

s → ep·s· a
|a|

while for the solar field a periodic lift is characterized by

s → eu(s)· a
|a|

with u(s) as in (8). These two maps here are called an elementary periodic function,
respectively, an elementary Clairaut map. Therefore, we can state:

Proposition 2. Let x be a point on the integral curve β. Under the hypothesis a = const made
above there is a one-to-one correspondence between all elementary periodic Ua(1)-valued
functions and all periodic lifts of β passing through a given vx ∈ Pa

x . In the case X is the solar
field, there is a one-to-one correspondence between the collection of all periodic lifts passing
through a given vx ∈ Pa and elementary Clairaut maps.

Hence the periodic lifts of β on Pa|β describe the transmission of pieces of information of
Pa|β along β, the channel of information transmission.

Let us conclude this section with an interpretation of the internal variables of a constant
vector field X with principal part a. To this end we put the emphasis on a periodic lift on the
cylinder Pa

∣∣
βx0

for a given initial point x0 of the integral curve βx0 . This lift shall now be

rotating with frequency ν. Thus a point w(ζ ; t), say, on this rotating lift is described by

w(ζ ; t) = ∣∣vx0

∣∣ ·
βhor

vx0
(ζ )∣∣βhor

vx0
(ζ )

∣∣ · e−ν(t−|a|·p·ζ )· a
|a| (10)

for all ζ ∈ Ṙ and any t ∈ R. Thus w is a circular polarized wave on the cylinder with
1

|a|·|p| as speed of the phase and
∣∣vx0

∣∣ as amplitude; w travels along R · a
|a| , the channel of

information.
Thus we have associated a circular polarized wave of internal variables with the integral

curve.
The map w is a wave with values in the cylinderPa

∣∣
βx0

, a flat manifold. It can be extended

from R · a
|a| to all of E and be interpreted as an electric or magnetic field as will be seen in the

next section.

5. Circular polarized electromagnetic waves of internal variables

Here we will explore a particular type of circular polarized wave, namely electromagnetic
circular polarized plane waves. In the case of a constant vector field on E with principal part
having value a, internal variables may be interpreted as electric and magnetic field strengths,
respectively.

To demonstrate this let us study the geodesics on Pa
∣∣
βx

where a is constant for any x ∈ E.
Given an initial point x ∈ E and an initial vector vx ∈ Pa

x , the integral curve βx passing
through x at ζ = 0 is covered by a geodesic γ on Pa

∣∣
βx

through vx . In fact, γ passing through
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vx can be viewed as a periodic lift of βx formed with respect to the Riemannian metric on Pa

inherited from E × H. As mentioned in (6), the equation of γ is

γ (ζ ) = βhor
x (ζ ) · e|a|·p·ζ · a

|a| ∀ζ ∈ R

where βhor
x is a meridian through vx at ζ = 0 and p is a fixed real. Moreover, ζ varies on

the ζ -axis R · a
|a| . Let the ξ -axis and the η-axis in Fa be given by R · vx

|vx | and R · vx

|vx | · a
|a| ,

respectively.
The form of the equation of γ suggests we consider the electric field

E : E × R −→ Pa ⊂ E × E

defined by

E(ξ, η, ζ, t) := A

|vx | · vx · e−ν(t− ζ

c
)· a

|a| ∀ξ, η, ζ, t ∈ R

for any x ∈ E with x = (ξ, η, ζ ). Here A is an amplitude, ν the frequency with which the
geodesic as a whole rotates, c the speed of light, |a| = 1

c
and p = 1. Hence the electric field

along any βx is caused by a rotation of a geodesic on the cylinder Pa
∣∣
βx

(cf (10)). Thus if
A = |vx |, for any x ∈ E the values of the field E are internal variables. The vector

B(ξ, η, ζ, t) := E(ξ, η, ζ, t) × a

|a| ∀ξ, η, ζ, t ∈ R

is the magnetic field vector.
It is a straightforward matter to show that E and B satisfy the Maxwell equations of

non-conducting isotropic media, namely rot B = 1
c
· ∂E

∂t
and rot E = − 1

c
∂B

∂t
where ε = µ = 1,

and, in turn, the wave equations

�E = − 1

c2

∂2E

∂t2
and �B = − 1

c2

∂B

∂t2

(cf Born 1985).
Hence internal variables of the constant vector field may be viewed as electric and magnetic

field vectors. If the initial conditions of the electromagnetic waves (i.e. the values of a section
into Pa) are interpreted as pieces of information, these pieces of information are transmitted
by a wave.

6. Heisenberg groups and algebras of the constant field and of the solar field

In the case of a constant vector field X = (id, a) the fibre Pa
βx (s) is a circle with radius |a|− 1

2

and Pa|βx
is a cylinder. The Heisenberg group bundle G

a introduced in section 2 is trivial, i.e.

G
a = E × Ga.

Each Heisenberg group Ga induces a Heisenberg algebra

Ga := R · a ⊕ Fa

with Lie bracket

[λ1 · a + h1, λ2 · a + h2]Ga := ωa(h1, h2) · a

for ωa as defined in (2). The Heisenberg algebra bundle

G̃a := E × Ga

is trivial, as well.
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For the radial vector field on Ė = E\{0}, i.e. for the solar field given by

a(x) = m̄

|x|3 · x ∀x ∈ Ė

the fibre of the principal bundle Pa at x is a circle with radius |x|√
m̄

. This shows that Pa|R·x is a
cone (without its vertex). For reasons of simplicity we assume m̄ = 1. The collection⋃

x∈S2

Ua(x)(1) = S3 ⊂ H

is a group under the multiplication in H. It is the group SU(2). Moreover,

H =
⋃

x∈R· x0
|x0 |

S3
|a(x)|

for a fixed x0 ∈ S2. Here S3
|a(x)| is the three-sphere with radius |a(x)|.

Next we will see that the group structure on SU(2) is determined entirely by one fibre of
G

a , i.e. by one Heisenberg group. In doing so we follow Pods (2003). Observe that any fibre
Ga(x) is of the form

Ga(x) = τu(x)(G
a(x0))

for a given x0 ∈ S2. Here we again use the inner automorphism τh given by τh(k) := h ·k ·h−1

for all k ∈ H and any h ∈ H (cf (4)). (It is well known that any automorphism of the skew
field H is an inner automorphism.) In analogy to the remarks in section 3, a(x) = τu(x)(a(x0))

for all x ∈ S2. Therefore we can deduce all (three-dimensional) Heisenberg groups from a
single group by applying a suitable inner automorphism. (This has in fact a whole variety of
consequences.)

To determine the group structure of SU(2) let us consider

K :=
⋃
b∈S2

Gb

containing SU(2).
The group structure of SU(2) can be reconstructed from the Heisenberg groups in K as

follows: As a set, SU(2) is the union of the centres of the Heisenberg groups. Any two
elements w1, w2 ∈ SU(2) can be written in the form

w1 = cos t1 · e + sin t1 · b1 ∈ Ub1(1) w2 = cos t2 · e + sin t2 · b2 ∈ Ub2(1)

for suitable b1, b2 ∈ S2. Then for the product w1 · w2 we have

w1 · w2 = (cos t1 · e + sin t1 · b1) · (cos t2 · e + sin t2 · b2)

= cos t1 cos t2 · e + sin t1 cos t2 · b1 + cos t1 sin t2 · b2 + sin t1 sin t2 · b1 · b2

so that |w1 · w2|2 = 1. Moreover, b1 · b2 can be expressed by data in K. It can be shown that
the multiplication defined in this way corresponds to the multiplication in SU(2) given by the
one in H.

Vice versa, the multiplication in H and hence the one in SU(2) determine the Lie structure
on Gb for any b ∈ S2 since the product of any two h1, h2 ∈ Fb is given by equation (1) and

〈h1 · h2, b〉 · b = 〈h1 × h2, b〉 · b = −ωb(h1, h2) · b = −[h1, h2]Gb

holds.
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7. Geometric construction of the Schrödinger representation

In this section we confine ourselves again to a constant vector field and to the solar field,
starting with a constant vector field.

Unless specified otherwise, β denotes a field line of X, a straight line, with initial condition
β(0) = x. Again βhor

vx
is the horizontal lift of β through vx ∈ Pa

x . There is a unique periodic
lift γ of β passing through vx = γ (0) with prescribed velocity γ̇ (0). First we will associate
with γ̇ (0) a well-defined unitary linear operator on a Hilbert space as follows:

The specification of vx ∈ Pa
x turns Fa(x) into a field isomorphic to C, since vx

|vx | · C = Fa(x).
The real axis is R · vx

|vx | and the imaginary one is R · vx

|vx | × a
|a| . We rename these axes as the

q-axis carried by the unit vector q̄x and the p-axis carried by the unit vector p̄x , respectively.
Any h ∈ Fa(x) is thus of the form h = (q, p). The Schwartz space of the real axis and its L2-
completion, a Hilbert space, are denoted by S(R, C) and L2(R, C), respectively.

Given a frequency ν, the Schrödinger representation ρν
x of Ga(x) (containing Fa(x)) acts

on each complex-valued ψ ∈ S(R, C) ⊂ L2(R, C) by

ρν
x (z + h)(ψ(τ)) := e−ν·ϑ· a

|a| · e|a|·ν·p·τ ·i · e− |a|
2 ·ν·p·q·i · ψ(τ − q) (11)

for all τ ∈ R and all z+h = eϑ· a
|a| + (q, p) ∈ Ga(x) for some ϑ ∈ R (cf Schempp 1986, Folland

1989, Guillemin and Sternberg 1991). Clearly,

−p · q · i = ωa((p, 0), (0, q)) · i.

By the Stone–von Neumann theorem ρν
x is irreducible (cf Schempp 1986, Folland 1989).

Setting ν = 1, ρν
x = ρ, z = e and q = |vx|, for any p ∈ R equation (11) turns into

ρ(e + (|vx |, p))(ψ)

(
τ +

|vx |
2

)
= e|a|·p·τ ·i · ψ

(
τ − |vx |

2

)
∀τ ∈ R.

Operators of this form generate ρ(Ga(x)), of course.
In the case the frequency ν differs from one, for each p ∈ R equation (11) becomes

ρν
x

(
et · a

|a| + (|vx |, p)
)
(ψ)

(
τ +

|vx |
2

)
= e−ν·(t−|a|·p·τ)·i · ψ

(
τ − |vx |

2

)
∀τ, t ∈ R. (12)

This shows that the factor e−ν(t−|a|·p·s) for s = τ , characteristic of a circular polarized wave
as described in (12), shows up in the Schrödinger representation. This expresses the fact that
the geometry of the collection Pa

∣∣
βx0

of all internal variables along βx0 is directly transferred

to the Hilbert space L2(R, C) via the Schrödinger representation. Differently formulated, the
Schrödinger representation has a geometric counterpart, namelyPa together with its geometry,
for which the elements are bits of information.

On the other hand the Ua
x (1)-valued function τ −→ e−ν(t−|a|·p·τ)·i entirely describes

the periodic lift γ , rotating with frequency ν and passing through vx , as expressed in (10).
Thus the circular polarized wave w is characterized by the unitary linear transformation
ρν

x

(
et a

|a| + (|vx |, p)
)

on L2(R, C). Due to the Stone–von Neumann theorem, the equivalence
class of ρν

x is uniquely determined by ν and vice versa.
Therefore, we state:

Theorem 3. Any periodic lift γ of β on Pa|β with initial conditions γ (0) = vx and first
integral p is uniquely characterized by the unitary linear transformation ρ(e + (|vx|, p)) of
L2(R, C) with (e + (|vx|, p)) ∈ Ga(x) and vice versa. The unitary linear transformation
ρν

x

(
et · a

|a| + (|vx |, p)
)

of L2(R, C) characterizes the circular polarized wave w with frequency
ν on Pa|β generated by γ and vice versa. Thus vx ∈ Pa

x determines a unitary representation
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ρ on L2(R, C) characterizing the collection Ca
vx

of all periodic lifts of β passing through vx ,
and, in turn, the circular polarized waves (in the sense above) with a given frequency ν. The
frequency determines the equivalence class of ρν

x and vice versa.

We may reinterpret theorem 3 as follows: Any curve γ ∈ Ca
vx

on Pa|β with prescribed first
integral p is an evolution of the piece of information vx , transmitted by γ with a velocity
determined by p or, equivalently, by the circular polarized wave with frequency ν. Hence
ρ(e + (|vx |, p)) describes this transmission of a piece of information along the field line β of
X in terms of a unitary linear operator. Thus the information encoded in Fa is modulated on
any signal in L2(R, C). Since these operators generate the representation of Ga(x), we may
state the following:

Corollary 4. The Schrödinger representation of Ga(x) describes the transmission of any
piece of information (|vx |, p) ∈ T(|vx |,0)Pa|β along the field line β, with R · a as information
transmission channel. It modulates the bits of information on any signal in L2(R, C).

The mechanism which associates with each geodesic a Schrödinger representation as expressed
in theorem 3 generalizes for the solar field as follows (cf Pods 2003): Let O = Ė. Given an
integral curve β, we consider the Heisenberg algebra R · a

|a| ⊕Fa equipped with the symplectic
structure determined by a

|a| . Now let γ be a geodesic on the rotational surface Pa|β . The curve
parameter is s and the surface shall be parametrized by x(u, v) with coordinate functions u and
v (cf (7)). Thus γ (s) is identical with the point x(u(s), v(s)) on the surface. In addition, let
ψ ∈ S(R, C). Then the Schrödinger representation ρs (with frequency one) on the Heisenberg
group Ga(x) of the solar field is given by

ρs(z, x(u(s), v(s)))(ψ)(τ ) := z−1 · eu(s)·τ ·i · e
1
2 ·u(s)·v(s) · ψ(τ − v(s))

for all s in the domain of γ and any τ ∈ R. Obviously this further generalizes to any frequency.

8. Spin 1
2 and Schrödinger representations

The map τ : SU(2) → SO(E) assigns to any h the isometry τh|E. Moreover, τ is surjective
and two-to-one. Hence SU(2) is the spin group in the Clifford algebra H of Fb equipped
with −〈 , 〉. Since τt·h = τh for any h ∈ SU(2) and any t ∈ R, the group SO(E) is the real
projective space of H, a fact which has remarkable consequences in quantum mechanics and
MRI (cf Schempp 1998).

Since the group structure of SU(2) is reconstructable from the Heisenberg groups in
K = ∪b∈S2Gb, one expects a close relationship between spin representations and Schrödinger
representations of the Heisenberg groups in K. This relationship, established in Pods (2003), is
fundamental for signal theory, in particular for MRI. It allows us to describe signal transmission
and detection in three-space with spin models.

We here concentrate on the spin 1
2 representation of SU(2) only.

Given a spin 1
2 representation r, the representation space has complex dimension two

and real dimension four, respectively. Thus we may take H = C
a ⊕ Fa , a complete unitary

complex linear space, as representation space.
Fixing some b ∈ S2, the restriction rb of r to Ub(1) is not irreducible; in fact, it splits

according to H = C
b ⊕ Fb into rb = rb

1 + rb
2 . The (unitary) first component

rb
1 : Ub(1) → U(Cb)

acts as

rb
1 (z) = mz ∀z ∈ Ub(1)
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while the (unitary) second one

rb
2 : Ub(1) → U(Fb)

operates via

rb
2 (z) = mz−1 ∀z ∈ Ub(1).

Here mz and mz−1 denote the right multiplications by z on C
b and by z−1 on Fb, respectively.

Elements of the form

k := 1
2 r(a)(h) ∀h ∈ SU(2)

are called spinors.
On the other hand, the Schrödinger representation on Gb, say, is based on the following

splitting of the Heisenberg group. Given v ∈ Fb and b ∈ S2, let

Kb := R · v · b and Nb := Ub(1) ⊕ R · v.

Then

Gb = Kb ⊕ Nb.

The character

χb
rs

:= χrs
· e〈v,...〉·i for s = 1, 2

on Gb, where χrs
= tr rs for s = 1, 2 and e〈v,...〉·i is the character on the Abelian group Fb

mapping any w ∈ Fb into e〈v,w〉·i , yields, after an induction, the Schrödinger representation
ρb

s for s = 1, 2 with frequency 1 and −1, respectively. Different v ∈ Fb\{0} yield equivalent
representations due to the Stone–von Neumann theorem and the Kirillov coadjoint orbit
theorem for nilpotent Lie groups (cf Schempp 1986).

Thus

ρb
r := ρb

1 + ρb
2

is a representation of Gb onto the unitary group U(L2(R, C) ⊕ L2(R, C)). In the case ν = 0,
both ρb

1 and ρb
2 are one-dimensional. Hence, if Y is a (not necessarily continuous) vector field

on S2, the pair (r, Y ) provides a family ρY of Schrödinger representations emanating from K.
The representations ρY and ρY ′ will be equivalent as long as they have the same singularities.
Vice versa, let ρb

1 and ρb
2 be two Schrödinger representations of the Heisenberg group Gb

with b ∈ S2 with respective frequencies 1 and −1. They extend to any Ub′
(1) ⊂ SU(2) with

b′ ∈ S2 by setting

ρb′
1 := ρb

1 ◦ τk and ρb′
2 := ρb

2 ◦ τk

for some k ∈ H with τk(b
′) = b. They determine a character χ on SU(2) given for any t ∈ R

by

χ(et·b′
) = exp(−i · t) + exp(i · t) ∀b′ ∈ S2 ⊂ E = su(2).

Hence χ determines a spin 1
2 representation of SU(2) which reproduces ρb

1 and ρb
2 by means

of the above construction. There is an infinitesimal version of this link, as well (cf Pods 2003).
The relation between the spin 1

2 representations and the Schrödinger representations as
mentioned above emanates from one Heisenberg algebra Gb with b ∈ S2.

Given one of the Schrödinger representations ρb
1 and ρb

2 of the Heisenberg group Gb

(the other one can be reconstructed), there is a spin 1
2 representation. Moreover, given one

Heisenberg algebra Gb and an (infinitesimal) Schrödinger representation with frequency one,
there comes a (four-dimensional) spin 1

2 representation of SU(2) with it.
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Let us point out that ρb
1 and ρb

2 are representations of the Heisenberg groups (Ub(1) ⊕
Fb, ωb) and (U−b(1) ⊕ F−b, ω−b), respectively. In other words, ρb

2 is the contragradient
representation of ρb

1 . This is particularly important because ρb
1 ⊗ ρb

2 (emanating from the
spin 1

2 representation) is the principal ingredient to describe entangled pairs (photons etc), i.e.
teleportation (cf Binz and Schempp 1999). Hence an equivalent way of saying this is that the
spin 1

2 representation encodes entangled pairs.
To deal with the notion of spin later on, let us discuss

e,−b, q0, q0 · b
which is the skew analogue of Pauli matrices corresponding to the splitting H = C

b ⊕ Fb

since C
b acts from the right on Fb (cf Binz et al 2003).

Setting z = et·b yields
b
2 · ṙ(b)(e) = − 1

2 · e b
2 · ṙ(b)(b) = − 1

2 · b

b
2 · ṙ(b)(q0) = 1

2 · q0 and b
2 · ṙ(b)(q0 · b) = 1

2 · q0 · b.

1
2 · b · ṙ is the classical (Hermitian) spin 1

2 representation, while h̄
2 · b · ṙ is the quantum

mechanical (Hermitian) one. The eigenvalues are ± 1
2 and ± h̄

2 , respectively.
Hence, if there is specified one Heisenberg algebra Gb or one Heisenberg group Gb, there

is a classical and a quantum spin 1
2 formalism present which allow the rephrasing of the

information encoded in the Schrödinger representation (with frequency one) of Gb.
For MRI it is important to transfer the notion of spin to a point in the coadjoint orbits of

Gb, pulled back to the Heisenberg algebra via the scalar product. These orbits are of the form

ϑ · b ⊕ Fb for a fixed ϑ ∈ R.

Each of these affine planes represents a slice through the body. These slices are to be imaged.
Each orbit is obtained by a translation Sϑ·b , say, on the Euclidean space E, applied to Fb, i.e.
ϑ · b + Fb = Sϑ·b(F b). The half-spin

s = b

2
· ṙ(b)(h) ∈ T0Gb = Gb

transferred to any point ϑ · b + q in ϑ · b ⊕ Fb is

TqSϑ(s) = s ∈ Tϑ·b+q(R · b + Fa)

since TqSϑ·b = id. In more detail this is discussed in Pods (2003).
The notion of spin 1

2 can immediately be related to a magnetic field B, a two-form on O,
since

B(x)(v,w) = 〈B(x) × v,w〉 ∀v,w ∈ E and ∀x ∈ O.

For our purposes we suppose that the magnetic field strength B is constant on O. Thus any
vector in E = su(2) couples to B. The constant field B defines a Heisenberg algebra GB along
a field line, hence a Schrödinger representation of GB and, in turn, a spin 1

2 representation of
SU(2). Given a spin s = ṙ(b)(h) with h ∈ H, the magnetic moment µs is defined to be

µs := µ · s

where µ is the gyromagnetic (coupling) constant. The equation describing the motion of s is
given by

dµs

dt
= µ · s × B

which in turn yields the Larmor frequency ω of resonance

ω = µ · |B|.
This relation between spin 1

2 and B is fundamental in MRI and yields a description of the
imaging technique via the Schrödinger representation. This is done in Schempp (1998) and
Pods (2003).
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9. The ambiguity function

Next let us bring the Schrödinger representation into the context of time-frequency analysis.
One of the basic ingredients is the ambiguity function.

Given any two signals ϕ and ψ in the Schwartz space S(R, C) of rapidly decreasing
C-valued functions on R, the ambiguity function A is defined by

A(ϕ,ψ; α, β) :=
∫

R

et·β·i · ϕ
(
t − α

2

)
· ψ̄

(
t +

α

2

)
dt .

Here the reals α and β are called time shift and frequency shift, respectively. This map

A(. . . , . . . ; α, β) : S(R, C) × S(R, C) −→ S(R × R, C)

is surjective and sesquilinear for each fixed α and β. Given b ∈ S2, the functionA is obviously
adapted to Fb via a coordinate system given by a chosen unit vector q0 and q0 · b.

The ambiguity function is directly related to the Schrödinger representation (cf Schempp
1986) in the following way. The coefficient function cρ,ϕ,ψ of ρ (with frequency one) is
defined by

cρ,ϕ,ψ(h) := (ρ(h)(ϕ), ψ)L2

for any h ∈ Fb, where both ϕ and ψ are defined on R · q0. Here (, )L2 is the usual L2-Hermitian
product on S(R, C). Setting h = α · q0 + β · q0 · b ∈ Fb for α, β ∈ R and b ∈ S2,

cρ,ϕ,ψ(α, β) =
∫

ep·(q− α
2 )·i · ϕ(q − α) · ψ̄(q) dq

which yields

cρ,ϕ,ψ(α, β) = A(ϕ,ψ; α, β)

for t := q − α
2 . In fact, ρ is square integrable modulo centre, i.e. on Fb = Gb/Ub(1).

Since the information encoded in the ambiguity function A is also hidden in ρ, we have
a link between the Schrödinger representation, the spin 1

2 representation and the ambiguity
function, which may be used for a description of imaging techniques in MRI (cf Schempp
1998, Pods 2003). If, in particular, the spin 1

2 formalism models microscopic processes, the
derived Schrödinger representations ρ1 and ρ2 from the previous section make them detectable
on the macroscopic scale (cf Pods 2003).

The well-known Wigner function is up to a rotation in the arguments of the Fourier
transform of the ambiguity function (cf Gröchenig 2000). This function, however, was
introduced by Wigner as a substitute for the non-existing joint probability distribution of
position and momentum in the quantum state ψ . This hints at a link from the Schrödinger
representation to quantum mechanics, which will become evident in the next section where
we will discuss the quantization of inhomogeneous quadratic polynomials.

10. Quantization

The notion of quantization we look at here is based on the Heisenberg group Ga, the symplectic
group Sp(F a) and its two-fold covering Mp(F a), the metaplectic group. Here Fa ⊂ Ga is the
symplectic plane for a given a ∈ S2. The pointal information encoded in Fa is modulated on
signals via the Schrödinger representation. The points in Fa will be rearranged by a symplectic
map, i.e. by a linear map preserving the symplectic structure, which is nothing other than the
volume form. This rearrangement of information inscribed in Fa will yield a quantization.
The following shall motivate the importance of volume preserving maps.
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First of all, however, we will take a detour into information transmission in order to clarify
the terms used in the following. Suppose we had a photography in a plane Fa , say, embedded
into a Euclidean space E and want to transmit the picture to a destination. For the sake of
simplicity, the transmission will follow an axis R · a, where a is transverse to the plane Fa .
This axis shall be the channel of information.

Describing this process requires analysing the information the photography presents, the
geometry underlying the transmission, the encoding in signals and their detection as well as
the preservation of information during the transmission.

In this section we will mainly concentrate on the analysis of the notion of information, on
the geometry of the transmission and, most important, on the preservation of the information
during the transmission. The latter will directly yield the elementary quantization formalism,
as we will see later.

First let us concentrate on the notion of information. We will enlarge our concept
of information here from a pointal description to density maps, i.e. the information the
photography contains is encoded in grey-scales expressed by a positive density function

f : Fa −→ R.

A bit of information is a point q ∈ Fa together with a grey value f (q). Thus f is here called
an information density.

We define the total amount j of information as

j :=
∫ a

F

f · ω

where ω is a (non-vanishing) volume form on Fa . This form ω shall not depend on the points
in Fa ; it is a symplectic form expressing the grey-shade at each point q ∈ Fa . Its value is one
if the point is a black spot and is close to zero if the spot is almost white.

Obviously,

f

j
: Fa → R

is a probability density. Associated with it is one of the most basic ingredients of information
theory, namely Shannon’s entropy

ε := − log
f

j

(cf Cover and Thomas 1991). Roughly speaking, the entropy provides an upper bound for
transmitting reliable information through a channel.

Next let us turn to the geometry underlying the information transmission. It is provided
by the Heisenberg Lie algebra Ga = R · a ⊕ Fa with symplectic structure ω. The centre R · a
of Ga is our channel along which information shall be transmitted.

Again, the points in Fa are regarded as internal variables of the points in R · a.
In general, the transmission of information follows much more general curves than straight

lines, e.g., in geometric optics (cf Born 1985). However, the setting chosen is general enough
to provide us with some of the most elementary observations on information transmission.

As mentioned above, the transmission of the information encoded in Fa shall follow
along R · a. In mathematical terms, the points in Fa shall be smoothly mapped into t · a + Fa

for any t ∈ R. Due to our assumptions this map can be composed by a smooth map

�(t) : Fa → Fa

followed by a translation

�t : Fa −→ t · a + Fa



6418 E Binz et al

where �t(h) = t · a + h for all h ∈ Fa . In contrast to �t , which is certainly information
preserving, the map �(t) rearranges the information in Fa . If we wish the information to
be preserved, �(t) has to be at least a diffeomorphism. Let us assume that �(0) = idFa .
In order to investigate further requirements that guarantee information preservation we study
f (t) := f ◦�(t) in the formula j (t) := ∫

Fa f (t) ·ω(t) for the total information j in t ·a + Fa

where ω(t) is the volume form on Fa caused by the diffeomorphism �(t) on Fa . Clearly

ω(t) = �(t)∗ω ∀t ∈ R

which, expressed in more detail, reads

ω(t)(v,w) = det D�(t) · ω(v,w)

for any v,w ∈ Fa and any t ∈ R. Thus the total information can be rewritten as

j (t) =
∫

Fa

f ◦ �(t) · (det D�(t)) · ω ∀t ∈ R. (13)

The total information is preserved iff

dj (t)

dt
= 0 ∀t ∈ R.

The mean grey value expressed by the total information is not very informative, however.
More informative is the requirement that the information at any pixel is preserved, which
means that the integrand on the right-hand side of (13) is constant. This is to say

Df ◦ d�(t)

dt
· �(t)∗ω + f ◦ �(t)

d

dt
(det D�(t)) · ω = 0 (14)

has to be satisfied for any t ∈ R. This equation is called the continuity equation for f (cf Binz
1993).

Since the information density f (t) is positive for any t ∈ R, the entropy

ε(t) = − log
f (t)

j (t)

is well defined. Thus equation (14) turns into

dε(t)

dt
= tr D�(t)−1 ◦ d

dt
D�(t) ∀t ∈ R.

We call the transmission information preserving iff the entropy is preserved. Since

df (t)

dt
= 0 ⇔ dε(t)

dt
= 0 ∀t ∈ R

the information is preserved iff

det D�(t) = 1 ∀t ∈ R

saying that

D�(t) ∈ Sp(F a) ∀t ∈ R.

We therefore may state

Theorem 5. The information density f is preserved iff the entropy is preserved which is
equivalent to

D�(t) ∈ Sp(F a) ∀t ∈ R.

This theorem is the basis for our set-up of quantization. To explain this we need the Schrödinger
representation. We here essentially follow Guillemin and Sternberg (1991).
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The Schrödinger representation ρν (cf section 7) with frequency ν modulates the group
Ga onto each signal ϕ ∈ S(R, C). This is to say that it modulates in particular the points of
Fa onto each signal ϕ. Referring to a point h = q · eq̄ + p · ep̄ in Fa as a bit of information,
we can say that ρν modulates information in Fa onto any signal by

ρν(q · eq̄ + p · ep̄)(ϕ)(τ ) = e−ν· p·q
2 ·i · eν·p·τ ·i · ϕ(τ − q)

for any ϕ ∈ S(R, C) and any τ ∈ R. Obviously, for any ϕ ∈ S(R, C) and any τ ∈ R,

ρν(q · eq̄ + p · ep̄)(ϕ)(τ ) = ρ(q · eq̄ + ν · p · ep̄)(ψ)(τ )

holds true. This means that as far as the modulation of information on signals from S(R, C)

is concerned, we can restrict ourselves to the Schrödinger representation ρ having frequency
ν = 1.

To study the effect of a volume preserving rearrangement of the collection � ⊂ Fa of
information on a Schrödinger representation, we extend any A ∈ Sp(F a) to all of Ga by
setting it equal to the identity on the centre Ua(1). This extension is again called A. Hence

A : Ga −→ Ga

is a group automorphism. The infinitesimal transmission of information is a symplectic map
on Fa , provided the information density is preserved, regardless of the specific nature of this
density.

If the information is modulated on S(R, C), the preservation of information is expressed
by the Stone–von-Neumann theorem implying

ρ ◦ A = U(A) ◦ ρ ◦ U(A−1)

for any A ∈ Sp(F a). Here U is the metaplectic representation. This expresses the fact
that the preservation of information during the transmission is rephrased by maintaining
the equivalence class of the Schrödinger representation during the transmission. In short,
preserving the entropy of the information means preserving the equivalence class of the
information.

This fact, however, yields classical quantum mechanics, i.e. the quantization of all
inhomogeneous quadratic polynomials, as we will see next. Thus the preservation of entropy
paired with the Schrödinger representation causes classical quantum mechanics.

Therefore we have a representation

U : Mp(F a) −→ U(L2(R, C))

the metaplectic representation.
Hence a volume preserving rearrangement, i.e. an isentropic rearrangement, of

information in Fa causes the irreducible metaplectic representation. We will see below that
U and the Schrödinger representation ρ yield a quantization procedure for inhomogeneous
quadratic polynomials.

We will base the quantization scheme on the infinitesimal metaplectic representation and
on dρ. The infinitesimal representation dU of U, i.e. the representation of the Lie algebra
mp(F a) is the differential of U at idFa ∈ Mp(U). Since the metaplectic group Mp(F a) is a
two-fold covering of the symplectic group Sp(F a), both Lie algebras sp(F a) and mp(F a) are
identical. Thus we base our developments on sp(F a), which consists of all traceless linear
endomorphisms of Fa .

Our first goal is to establish a natural isomorphism between sp(F a) and the Poisson
algebra of all homogeneous quadratic polynomials Q. The latter will be introduced now.

We define a Poisson bracket on C∞(F a, R), the R-algebra of all smooth R-valued
functions of Fa : given f ∈ C∞(F a, R), its Hamiltonian vector field Xf is defined by
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ωa(X,Xf ) = df (X)

for any smooth vector field X on Fa .
Clearly Xf is smooth. For any g in the collection C∞(F a, R) of all R-valued smooth

function of Fa , one easily observes that the Lie bracket [Xf ,Xg] is a Hamiltonian vector field
again (cf Guillemin and Sternberg 1991). This is to say that there is a function {f, g} on Fa

for which

[Xf ,Xg] = X{f,g}.

{f, g} is called the Poisson bracket. C∞(F a, R) together with the bracket {, } is a Lie algebra.
To define the notion of a quadratic polynomial on Fa we choose a unit vector eq̄ ∈ Fa and
form eq̄ · a =: ep̄.

These two unit vectors define a coordinate system with coordinates q and p. Obviously

ωa(eq̄, ep̄) = 〈eq̄ · a, eq̄ · a〉 = ‖eq‖2 = 1.

We now consider the collection Q of all homogenous quadratic polynomials in the internal
variables expressed in coordinates q and p on Fa . Here each polynomial pol is identified with
its real-valued function fpol in two variables. The functions f 1

2 q2 , f 1
2 p2 and fpq generate Q.

Obviously, Q is a sub-Poisson algebra of C∞(F a, R). For a polynomial f ∈ Q the principal
part af : Fa → Fa of the vector field Xf is a traceless linear isomorphism. Therefore, we
have a map

ham : Q −→ sp(F a)

a Lie algebra isomorphism, given by

ham(fpol) := Xpol

where fpol denotes a quadratic homogenous polynomial in Q.
A quantization of the Poisson algebra Q of all quadratic homogenous polynomials in two

variables is an irreducible representation on a Hilbert space. The quantization map Q on Q is
defined to be the composition

Q ham−→ sp(F a)
i·dU−→ End(L2(R, C)).

The value of the representation Q = i · dU ◦ ham of any polynomial in Q is the quantization
of that polynomial.

This quantization scheme can be extended to the semi-direct product of the metaplectic
group with the Heisenberg group to yield a quantization for all inhomogeneous quadratic
polynomials (cf Guillemin and Sternberg 1991).

In more detail, the quantization map Q has a natural extension to the Poisson algebra Q1

of all inhomogeneous quadratic polynomials on Fa . In fact, ham can be extended to

Q1
ham−→ sp(F a) × Ga

with the Heisenberg algebra Ga defined for some a ∈ S2. The constant polynomial 1 ∈ R and
the linear ones q and p (the coordinate functions in Fa) are mapped onto the vectors −a,−ep

and eq , respectively. The Lie algebra sp(F a) × Ga of the semi-direct product Mp(F a) ×s Ga

is represented by d(i · U ◦ ρ) where i · U ◦ ρ is defined by

i · U ◦ ρ(A, g) := i · U(a) ◦ ρ(g) ∀A ∈ Mp(F a) and ∀g ∈ Ga.

The composition of ham with the representation d(i · U ◦ ρ) yields the desired extension
of the quantization map (cf Guillemin and Sternberg 1991). Thus this quantization map
is defined by means of ρ. The homogenous quadratic polynomials are quantized by
means of the metaplectic representation which plays a fundamental role in geometric optics
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(cf Guillemin and Sternberg 1991, Gerrard and Burch 1994) on the one hand. On the
other hand it relies on ρ which plays a key role in time-frequency analysis (cf Folland
1989, Gröchenig 2000) as far as the ambiguity function or the (related) Wigner function is
used. However, the Wigner function is also an important tool in the determination of light
distributions in geometric optics (cf Brenner and Ojeda-Castaneda 1984, Bartelt et al 1980).
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